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Abstract. We study the generalized supersymmetric t–J model with impurities in the boundaries.
We first construct the higher spin operator K-matrix for the XXZ Heisenberg chain. Setting
the boundary parameter to be a special value, we find a higher spin reflecting K-matrix for the
supersymmetric t–J model. By using the quantum inverse scattering method, we obtain the
eigenvalue and the corresponding Bethe ansatz equations.

1. Introduction

There has been extensive interest in the investigation of low-dimensional correlated electron
systems with impurities. Recently, using renormalization group techniques, Kane and Fisher
[1] studied the transport properties of a one-dimensional (1D) interacting electron gas in the
presence of a potential barrier. They showed that a single potential scatter may dramatically
influence the physics in the presence of repulsive e–e interactions. The system behaves like a
Tomonaga–Luttinger liquid rather than a Fermi liquid. Some different techniques were also
applied to study similar systems [2, 3]. The Kondo impurities in a Tomonaga–Luttinger liquid
have been investigated in great detail [4–7].

Attempts to study the effects due to the presence of impurities in 1D quantum chains
within the framework of integrable models have a long successful history [8–13]. Andrei
and Johannesson [9] studied an arbitrary spin S embedded in a spin- 1

2 Heisenberg chain.
This method was generalized to other cases. Recently, the supersymmetric t–J model with
impurities has attracted considerable interests. The Hamiltonian of the t–J model includes
the near-neighbour hopping (t) and antiferromagnetic exchange (J ) [16, 17]

H =
L∑
j=1

{
−tP

∑
σ=±1

(c
†
j,σ cj+1,σ + c†

j+1,σ cj,σ )P + J

(
SjSj+1 − 1

4
nnnj+1

)}
. (1)

It is known that this model is supersymmetric and integrable for J = ±2t [18, 19]. The
supersymmetric t–J model was also studied in [20–23], for a review, see [24] and the references
therein. Essler and Korepin [23] showed that the one-dimensional Hamiltonian can be obtained
from the transfer matrix of the two-dimensional supersymmetric exactly solvable lattice model
[22, 25].

By use of the quantum inverse scattering method (QISM) [26], the supersymmetric t–J
model with higher spin impurity was first investigated in the periodic boundary conditions
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[15]. Recently, the supersymmetric t–J model with impurities have been studied extensively
in both periodic and reflecting (open) boundary conditions [27–31].

The open boundary condition has been studied extensively over the last decade. There
have been several methods to study the problem of the open boundary condition [32, 33]. At
the end of 1980s, Sklyanin [34] proposed a systematic approach to handle the open boundary
condition problem within the framework of the QISM. Besides the Yang–Baxter equation
[35], the reflection equation proposed by Cherednik [36] also plays a key role in proving
the commutativity of the transfer matrix. We know that the Hamiltonian of the model is
usually written as the logarithmic derivative of a transfer matrix at zero spectral parameter.
The boundary terms in the Hamiltonian are determined by the reflecting K-matrix which is
a solution to the reflection equation. In the usual boundary problem, the K-matrix is a c-
number matrix. The operator K-matrices which determine the impurities in the Hamiltonian
have been studied recently for several models [37], including the supersymmetric t–J model
[27, 28]. In this paper, we will study the operatorK-matrices for the generalized (q-deformed)
supersymmetric t–J model and find the eigenvalues of the corresponding transfer matrix.

The Hamiltonian (1) of the supersymmetric t–J model can be obtained from the transfer
matrix constructed by the rational R-matrix. We can also use the trigonometric R-matrix to
formulate the transfer matrix. The corresponding Hamiltonian is a generalization of the original
supersymmetric t–J model [38]. This Hamiltonian satisfies a symmetry of the quantum group
SUq(2|1). In this paper, we shall study the generalized supersymmetric t–J model with higher
spin boundary impurities. The operator K-matrix is first constructed for the XXZ Heisenberg
spin chain with higher spin impurities. We then find a higher spin operator K-matrix for the
supersymmetric t–J model. Using the graded algebraic Bethe ansatz method, We obtain the
eigenvalue of the transfer matrix and the Bethe ansatz equations.

The paper is organized as follows. We introduce the model in section 2. In section 3, we
study the XXZ spin chain with higher spin impurities and present the higher spin reflecting
matrices for the generalized supersymmetric t–J model. In section 4, using the nested algebraic
Bethe ansatz method, we obtain the eigenvalues of the transfer matrix for the generalized
supersymmetric t–J model. Section 5 includes a brief summary and discussions.

2. The model

We first review the generalized supersymmetric t–J model. For convenience, we choose a
similar notation to that in [23] and our previous paper [39]. The Hamiltonian of the generalized
supersymmetric t–J model takes the following form:

H =
N∑
j=1

∑
σ=±

[c†
j,σ (1 − nj,−σ )cj+1,σ (1 − nj+1,−σ ) + c†

j+1,σ (1 − nj+1,−σ )cj,σ (1 − nj,−σ )]

−2
N∑
j=1

[
1

2
(S

†
j Sj+1 + SjS

†
j+1) + cos(η)SzjS

z
j+1 − cos(η)

4
njnj+1

]

+i sin(η)
N∑
j=1

[Szjnj+1 − Szj+1nj ]. (2)

When the anisotropic parameter η = 0, this Hamiltonian reduces to an equivalent form of
the original Hamiltonian (1). The operators cj,σ and c†

j,σ mean the annihilation and creation
operators of an electron with spin σ on a lattice site j , and we assume the total number of
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lattice sites is N , with σ = ±1 representing spin down and up, respectively. These operators
are canonical Fermi operators satisfying anticommutation relations

{c†
j,σ , cj,τ } = δij δστ . (3)

We denote by nj,σ = c
†
j,σ cj,σ the number operator for the electron on a site j with spin σ , and

by nj = ∑
σ=± nj,σ the number operator for the electron on a site j . The Fock vacuum state

|0〉 is defined as cj,σ |0〉 = 0. Due to the exclusion of double occupancy, there are altogether
three possible electronic states at a given lattice site j ,

|0〉 |↑〉j = c
†
j,1|0〉 |↓〉j = c

†
j,−1|0〉. (4)

Szj , Sj , S
†
j are spin operators satisfying the su(2) algebra and can be expressed as

Sj = c
†
j,1cj,−1 S

†
j = c

†
j,−1cj Szj = 1

2
(nj,1 − nj,−1). (5)

The above Hamiltonian can be obtained from the logarithmic derivative of the transfer
matrix at zero spectral parameter. Within the framework of QISM, the transfer matrix is
constructed by the trigonometric R-matrix of the Perk–Schultz model [40]. The non-zero
entries of the R-matrix are given by

R̃(λ)aaaa = sin(η + εaλ)

R̃(λ)abab = (−1)εaεb sin(λ) (6)

R̃(λ)abba = ei sign(a−b)λ sin(η) a �= b

where εa is the Grassman parity, εa = 0 for boson and εa = 1 for fermion, and

sign(a − b) =
{

1 if a > b

−1 if a < b.
(7)

This R-matrix of the Perk–Schultz model satisfies the usual Yang–Baxter equation:

R̃12(λ− µ)R̃13(λ)R̃23(µ) = R̃23(µ)R̃13(λ)R̃12(λ− µ). (8)

In this paper, we shall concentrate our discussion only to the fermionic, fermionic and bosonic
case (FFB), that means ε1 = ε2 = 1, ε3 = 0. And we shall use the graded formulae to study
this model. For the supersymmetric t–J model, the spin of the electrons and the charge ‘hole’
degrees of freedom play a very similar role forming a graded superalgebra with two fermions
and one boson. The holes obey boson commutation relations, while the spinors are fermions
[24]. The graded approach has an advantage of making clear the distinction between bosonic
and fermionic degrees of freedom [41].

Introducing a diagonal matrix !bd
ac = (−)εaεc δabδcd , we change the original R-matrix to

the following form:

R(λ) = !R̃(λ). (9)

From the non-zero elements of the R-matrix Rcdab , we see that εa + εb + εc + εd = 0. One can
show that the R-matrix satisfies the graded Yang–Baxter equation

R(λ− µ)b1b2
a1a2
R(λ)

c1b3
b1a3
R(µ)

c2c3
b2b3
(−)(εb1 +εc1 )εb2 = R(µ)b2b3

a2a3
R(λ)

b1c3
a1b3
R(λ− µ)

c1c2
b1b2
(−)(εa1 +εb1 )εb2 .

(10)
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Explicitly, the R-matrix is written as

R(λ) =




a(λ) 0 0 0 0 0 0 0 0

0 b(λ) 0 −c−(λ) 0 0 0 0 0

0 0 b(λ) 0 0 0 c−(λ) 0 0

0 −c+(λ) 0 b(λ) 0 0 0 0 0

0 0 0 0 a(λ) 0 0 0 0

0 0 0 0 0 b(λ) 0 c−(λ) 0

0 0 c+(λ) 0 0 0 b(λ) 0 0

0 0 0 0 0 c+(λ) 0 b(λ) 0

0 0 0 0 0 0 0 0 w(λ)




(11)

where

a(λ) = sin(λ− η) w(λ) = sin(λ + η) b(λ) = sin(λ) c±(λ) = e±iλ sin(η).

(12)

Within the framework of the QISM, we can construct the L operator from the R-matrix as

Ln(λ) =



b(λ)− (b(λ)− a(λ))en11 −c−(λ)en21 c−(λ)en31

−c+(λ)e
n
12 b(λ)− (b(λ)− a(λ))en22 c−(λ)en32

c+(λ)e
n
13 c+(λ)e

n
23 b(λ)− (b(λ)− w(λ))en33


.
(13)

Here enab acts on the nth quantum space. Thus we have the (graded) Yang–Baxter relation

R12(λ− µ)L1(λ)L2(µ) = L2(µ)L1(λ)R12(λ− µ). (14)

Here the tensor product is in the sense of super-tensor product defined as

(F ⊗G)bdac = Fb
a G

d
c (−)(εa+εb)εc . (15)

Except in section 3.1, all tensor products in this paper are in the sense of super-tensor products.
The row-to-row monodromy matrix TN(λ) is defined as a matrix product over the N

operators on all sites of the lattice,

Ta(λ) = LaN(λ)LaN−1(λ) · · ·La1(λ) (16)

where the subscript a represents the auxiliary space, 1, . . . , N represent the quantum spaces
in which the tensor product is in the graded sense. Explicitly, we write [23]

{[T (λ)]ab}α1···αN
β1···βN = LN(λ)

cNβN
aαN

LN−1(λ)
cN−1βN−1
cNαN−1

· · ·L1(λ)
bβ1
c2α1
(−1)

∑N
j=2(εαj +εβj )

∑j−1
i=1 εαi . (17)

This definition is different from the non-graded case because there we have the graded Yang–
Baxter equation (10). By repeatedly using the Yang–Baxter relation (14), one can prove easily
that the monodromy matrix also satisfies the Yang–Baxter relation

R(λ− µ)T1(λ)T2(µ) = T2(µ)T1(λ)R(λ− µ). (18)

For a periodic boundary condition, the transfer matrix τperi(λ) of this model is defined as the
supertrace of the monodromy matrix in the auxiliary space

τperi(λ) = str T (λ) =
∑

(−1)εaT (λ)aa. (19)
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As a consequence of the Yang–Baxter relation (18) and the unitarity property of the R-
matrix, we can prove that the transfer matrix commutes with each other for different spectral
parameters,

[τperi(λ), τperi(µ)] = 0. (20)

In this sense we say that the model is integrable. Expanding the transfer matrix in powers of
λ, we can find conserved quantities. And the Hamiltonian is defined as

H = sin(η)
d ln[τ(λ)]

dλ

∣∣∣∣
λ=0

=
N∑
j=1

Hj,j+1 =
N∑
j=1

Pj,j+1L
′
j,j+1(0) (21)

where Pij is the graded permutation operator expressed as P bd
ac = δadδbc(−1)εaεc . The explicit

expression of the Hamiltonian is presented in equation (2).
In this paper, we consider the reflecting boundary condition case. In addition to the Yang–

Baxter equation, a reflection equation should be used in proving the commutativity of the
transfer matrix with boundaries. The reflection equation takes the form [36]

R12(λ− µ)K1(λ)R21(λ + µ)K2(µ) = K2(µ)R12(λ + µ)K1(λ)R21(λ− µ). (22)

For the graded case, the reflection equation remains the same as the above form. We only need
to change the usual tensor product to the graded tensor product. We write it explicitly as

R(λ− µ)b1b2
a1a2
K(λ)

c1
b1
R(λ + µ)c2d1

b2c1
K(µ)d2

c2
(−)(εb1 +εc1 )εb2

= K(µ)b2
a2
R(λ + µ)b1c2

a1b2
K(λ)

c1
b1
R(λ− µ)d2d1

c2c1
(−)(εb1 +εc1 )εc2 . (23)

Instead of the monodromy matrix T (λ) for periodic boundary conditions, we consider the
double-row monodromy matrix

T (λ) = T (λ)K(λ)T −1(−λ) (24)

for the reflecting boundary conditions. Using the Yang–Baxter relation, and considering the
boundary K-matrix which satisfies the reflection equation, one can prove that the double-row
monodromy matrix T (λ) also satisfies the reflection equation

R(λ− µ)b1b2
a1a2

T (λ)c1
b1
R(λ + µ)c2d1

b2c1
T (µ)d2

c2
(−)(εb1 +εc1 )εb2

= T (µ)b2
a2
R(λ + µ)b1c2

a1b2
T (λ)c1

b1
R(λ− µ)d2d1

c2c1
(−)(εb1 +εc1 )εc2 . (25)

Next, we study the properties of the R-matrix. We define the super-transposition st as

(Ast )ij = Aji(−1)(εi+1)εj . (26)

For FFB grading used in this paper, ε1 = ε2 = 1, ε3 = 0, we can rewrite the above relation
explicitly as 


A11 A12 B1

A21 A22 B2

C1 C2 D



st

=




A11 A21 C1

A12 A22 C2

−B1 −B2 D


. (27)

We also define the inverse of the super-transposition s̄t as {Ast }s̄t = A.
One can prove directly that the R-matrix (11) satisfies the following unitarity and cross-

unitarity relations:

R12(λ)R21(−λ) = ρ(λ) · id ρ(λ) = sin(η + λ) sin(η − λ) (28)

R
st1
12 (η − λ)M1R

st1
21 (λ)M

−1
1 = ρ̃(λ) · id ρ̃(λ) = sin(λ) sin(η − λ). (29)
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Here the matrix M = diag(e2iη, 1, 1) is determined by the R-matrix. The cross-unitarity
relation can also be written as the following form:{

M−1
1 R

st1st2
12 (η − λ)M1

}s̄t2
R
st1
21 (λ) = ρ̃(λ) (30)

R
st1
12 (λ)

{
M1R

st1st2
21 (η − λ)M−1

1

}s̄t2 = ρ̃(λ). (31)

In order to construct the commuting transfer matrix with boundaries, besides the reflection
equation, we need the dual reflection equation. In general, the dual reflection equation which
depends on the unitarity and cross-unitarity relations of the R-matrix takes different forms for
different models. For the models considered in this paper, we can write the dual reflection
equation in the following form:

R
st1st2
21 (µ− λ)K+

1
st1(λ)M−1

1 R
st1st2
12 (η − λ− µ)M1K

+
2
st2(µ)

= K+
2
st2(µ)M1R

st1st2
21 (η − λ− µ)M−1

1 K+
1
st1(λ)R

st1st2
12 (µ− λ). (32)

Then the transfer matrix with boundaries is defined as

t (λ) = strK+(λ)T (λ). (33)

The commutativity of t (λ) can be proved by using unitarity and cross-unitarity relations,
reflection equation and the dual reflection equation. The detailed proof of the commuting
transfer matrix with boundaries for super (graded) case can be found, for instance, in [42–44]
etc. With a normalization K(0) = id , the Hamiltonian can be obtained as

H ≡ 1

2
sin(η)

d ln t (λ)

dλ

∣∣∣∣
λ=0

=
N−1∑
j=1

Pj,j+1L
′
j,j+1(0) +

1

2
sin(η)K ′

1(0) +
stra K+

a (0)PNaL
′
Na(0)

stra K+
a (0)

. (34)

3. Higher spin solution to the reflection equation for supersymmetric t–J model

In order to find the higher spin solution to the reflection equation for the generalized
supersymmetric t–J model, we first construct the higher spin reflecting matrix for the XXZ
Heisenberg chain.

3.1. XXZ Heisenberg chain with higher spin boundary impurities

The higher spin R-matrix can be constructed by using the fusion procedure [45]. The
Hamiltonian of the XXZ Heisenberg chain is written as

HXXZ =
N∑
j=1

[
σ +
j σ

−
j+1 + σ−

j σ
+
j+1 +

1

2
cos(η)σ zj σ

z
j+1

]
. (35)

Here σ± = 1/2(σ x ± σy) and σx, σ y and σ z are Pauli matrices. The R-matrix is known to be
the standard six-vertex model,

r12(λ) =




sin(λ + η) 0 0 0

0 sin(λ) sin(η) 0

0 sin(η) sin(λ) 0

0 0 0 sin(λ + η)


. (36)
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Within the framework of QISM, the L operator constructed by the R-matrix is written as

Lak(λ) =
(

sin(λ + 1
2η + 1

2ησ
z
k ) sin(η)σ−

k

sin(η)σ +
k sin(λ + 1

2η − 1
2ησ

z
k )

)
(37)

where a represents auxiliary space. As usual, we can construct the row-to-row monodromy
matrix Ta(λ) = LaN(λ) · · ·La1(λ), and we have the Yang–Baxter relation

r12(λ− µ)T1(λ)T2(µ) = T2(µ)T1(λ)r12(λ− µ) (38)

where the tensor product is a non-graded one.
Next, we consider the higher spin operators. Let the higher spin L operator take the form

[45, 46]

L(λ) =
(

sin(λ + Szη) sin(η)S−

sin(η)S+ sin(λ− Szη)

)
(39)

where Sz,S and S† are spin-s operators satisfying the following commutation relations:

[Sz,S±] = ±S± [S+,S−] = sin(2Szη)

sin(η)
. (40)

We also have the following relations for the spin-s operator:

sin(Szη) sin(η + Szη) + sin2(η)S−S+

= sin2(η)S+S− + sin(Szη) sin(Szη − η) = sin(sη) sin(sη + η). (41)

A more general relation can be written as

sin(λ + Szη) sin(η + Szη − λ) + sin2(η)S−S+

= sin2(η)S+S− + sin(λ− Szη) sin(−λ− Szη + η)

= sin(λ + sη) sin(sη + η − λ). (42)

One can prove that the higher spin L operator also satisfies the Yang–Baxter relation

r12(λ− µ)L1(λ)L2(µ) = L2(µ)L1(λ)r12(λ− µ). (43)

Now, let us consider the reflecting boundary condition. We can find a c-number solution
to the reflection equation Kc(λ) = diag (sin(ξ + λ), sin(ξ − λ)), where ξ is an arbitrary
parameter. This is a general c-number diagonal solution to the reflection equation. In particular,
if ξ → −i∞, we find K(λ) = diag(e2iλ, 1) is a solution to the reflection equation.

It is interesting to find a higher spin operatorK-matrix. We can construct the operatorK-
matrix by KXXZ(λ) = L(λ + c)Kc(λ)L−1(−λ + c), one can find easily that K(λ) is an operator
reflecting matrix satisfying the reflection equation. Explicitly, the higher spin reflecting K has
the form

KXXZ(λ) =
(
K(λ)11 K(λ)21

K(λ)12 K(λ)22

)

with
K(λ)11 = sin(λ− ξ) sin(λ + c + sη) sin(λ + c − η − sη)

+ sin(2λ) sin(λ + c + Szη) sin(ξ − c + η + Szη)

K(λ)22 = − sin(ξ + λ) sin(λ + c + sη) sin(λ + c − η − sη)

+ sin(2λ) sin(λ + c − Szη) sin(ξ + c − η + Szη)

K(λ)21 = sin(η) sin(2λ) sin(ξ + c + Szη)S−

K(λ)12 = sin(η) sin(2λ) sin(ξ − c + Szη)S+.

(44)
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By use of the cross-unitarity relation of theR-matrix, the operator reflecting matrix to the dual
reflection equation can also be found. The eigenvalues of the transfer matrix can be obtained
by applying the algebraic Bethe ansatz method.

3.2. Higher spin reflecting matrix for the supersymmetric t–J model

We know that the generalized supersymmetric t–J model has an SUq(2) symmetry. We
suppose that the operator K-matrix takes the following form:

K(λ) =



A(λ) B(λ) 0

B(λ) C(λ) 0

0 0 1


. (45)

Inserting this matrix into the reflection equation (23), we can find the following non-trivial
relations:

r̂(λ− µ)b1b2
a1a2
K(λ)

c1
b1
r̂(λ + µ)c2d1

b2c1
K(µ)d2

c2
= K(µ)b2

a2
r̂(λ + µ)b1c2

a1b2
K(λ)

c1
b1
r̂(λ− µ)d2d1

c2c1
(46)

and

K(λ)b1
a1
K(µ)

d1
b1

= K(µ)b1
a1
K(λ)

d1
b1

(47)

δa1d1 sin(λ− µ) e−i(λ+µ) + sin(λ + µ) ei(λ−µ)K(λ)d1
a1

= e−i(λ−µ) sin(λ + µ)K(µ)d1
a1

+ ei(λ+µ)K(µ)b1
a1
K(λ)

d1
b1

(48)

where all indices take values 1, 2, and we have introduced

r̂12(λ) =




sin(λ− η) 0 0 0

0 sin(λ) − sin(η) e−iλ 0

0 − sin(η) eiλ sin(λ) 0

0 0 0 sin(λ− η)


. (49)

This matrix r̂(λ) can be obtained from the matrix (36) by a gauge transformation and
with a change η → −η. Correspondingly, we can show that A(λ) = f (λ)e−2iλK(λ)11,
B(λ) = f (λ) e−iλK(λ)21, C(λ) = f (λ) e−iλK(λ)12, D(λ) = f (λ)K(λ)21 satisfy relation (46).
Substituting these results into relations (47) and (48), and after some tedious calculations, we
find that if we take ξ → −i∞, and f (λ) = −1/e2iλ sin(λ− c − η − sη) sin(λ− c + sη), all
relations obtained from the reflection equation can be satisfied. So, we finally find the higher
spin reflecting matrix as

A(λ) = g(λ)
(
e−4iλ sin(λ + c − sη) sin(λ + c + η + sη)
− sin(2λ) sin(λ + c − Szη) e−i(3λ+c+η+Szη)

)
B(λ) = g(λ) sin(η) sin(2λ) e−i(2λ−c+Szη)S−

C(λ) = g(λ) sin(η) sin(2λ) e−i(2λ+c+Szη)S+

D(λ) = g(λ)
(
sin(λ + c − sη) sin(λ + c + η + sη)− sin(2λ) sin(λ + c + Szη) e−i(λ−c−η+Szη)

)
(50)

where g(λ) = 1/ sin(λ− c − η − sη) sin(λ− c + sη).
Next, let us consider the higher spin reflecting matrix to the dual reflection equation (32).

We suppose K+ has the similar form as K . By direct calculation, we can find Rst1st212 (λ) =
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I1R21(λ)I1 with I = diag(−1,−1, 1). For the form (45), we have IK(λ)I = K(λ). Then
with the help of property [M1M2, R(λ)] = 0, we can write the dual reflection equation as

R12(µ− λ)K+
1
st1(λ)M−1

1 R21(η − λ− µ)K+
2
st2(µ)M−1

2

= K+
2
st2(µ)M−1

2 R12(η − λ− µ)K+
1
st1(λ)M−1

1 R21(µ− λ). (51)

We see that there is an isomorphism between K and K+:

K(λ) :→ K+st (λ) = K

(
η

2
− λ

)
M. (52)

Given a solution to the reflection equation (23), we can also find a solution to the dual reflection
equation (51). Remark that in the sense of the transfer matrix, the reflection equation and the
dual reflection equation are independent of each other. We can write the higher spin reflecting
matrix to the dual reflection equation as

K+(λ) =



A+(λ) B+(λ) 0

B+(λ) C+(λ) 0

0 0 1


 (53)

with

A+(λ) = g+(λ)[e4iλ sin(λ + c̃ − η + s̃η) sin(λ + c̃ − 2η − s̃η).

− sin(2λ− η) sin(λ + c̃ − η − S̃zη) ei(3λ+c̃−η+S̃zη)]

B+(λ) = −g+(λ) sin(η) sin(2λ− η) ei(2λ+c̃+ η

2 +S̃zη)S̃−

C+(λ) = −g+(λ) sin(η) sin(2λ− η) ei(2λ−c̃− η

2 +S̃zη)S̃+

D+(λ) = g+(λ)[sin(λ + c̃ − η + s̃η) sin(λ + c̃ − 2η − s̃η)

− sin(2λ− η) sin(λ + c̃ − η + S̃zη) ei(λ−c̃+η+S̃zη)]

(54)

where g+(λ) = 1/ sin(λ− c̃ + η + s̃η) sin(λ− c̃ − s̃η).
Thus we find the higher spin reflecting matrices for the generalized supersymmetric t–J

model. We should remark that these higher spin reflecting matrices are a kind of ‘singular’
matrices. They cannot be constructed directly by the Sklyanin’s ‘dressing’ procedure. In the
rational limit, they reduce to the result obtained in [28]. The rational higher spinK-matrix has
been analysed in detail by the projecting method [30]. Our result should also be obtained by
the projecting method.

By definition in equation (34), and using the explicit form of the boundary reflecting
matrices (50) and (54), we can find the boundary impurity terms. The boundary impurity
coupled to site 1 is written as

H1 = 2

sin(c + η + sη) sin(c − sη)
e−iSzη[eicS−S†

1 + e−icS+S1

+(e−i(c+η) sin(c − Szη)Sz1 − ei(c+η) sin(c + Szη)Sz1)]. (55)

The impurity coupled to site N is in a similar form.
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4. Algebraic Bethe ansatz method for the generalized supersymmetric t–J model with
higher spin impurities

4.1. First-level algebraic Bethe ansatz

We denote the double-row monodromy matrix as

T (λ) =




A11(λ) A12(λ) B1(λ)

A21(λ) A22(λ) B2(λ)

C1(λ) C2(λ) D(λ)


. (56)

For later discussions, we introduce the following transformations:

Aab(λ) = Ãab(λ) + δab
e−2iλ sin(η)

sin(2λ + η)
D(λ). (57)

As mentioned in section 2, the double-row monodromy matrix satisfies the reflection
equation (25), we have the following commutation relations:

Cd1(λ)Cd2(µ) = − r̂12(λ− µ)d2d1
c2c1

sin(λ− µ + η)
Cc2(µ)Cc1(λ) (58)

D(λ)Cd(µ) = sin(λ + µ) sin(λ− µ− η)

sin(λ + µ + η) sin(λ− µ)
Cd(µ)D(λ)

+
sin(2µ) sin(η) ei(λ−µ)

sin(λ− µ) sin(2µ + η)
Cd(λ)D(µ)− sin(η) ei(λ+µ)

sin(λ + µ + η)
Cb(λ)Ãbd(µ) (59)

Ãa1d1(λ)Cd2(µ) = r̂12(λ + µ + η)c1b2
a1c2
r̂21(λ− µ)

d1d2
b1b2

sin(λ + µ + η) sin(λ− µ)
Cc2(µ)Ãc1b1(λ)

+
sin(η) e−i(λ−µ)

sin(λ− µ) sin(2λ + η)
r̂12(2λ + η)b2d1

a1b1
Cb1(λ)Ãb2d2(µ)

− sin(2µ) sin(η) e−i(λ+µ)

sin(λ + µ + η) sin(2λ + η) sin(2µ + η)
r̂12(2λ + η)d2d1

a1b2
Cb2(λ)D(µ). (60)

Here the indices take values 1, 2, and the matrix r̂ is defined in (49).
We define a reference state in the nth quantum space as |0〉n = (0, 0, 1)t , and reference

states for the boundary operators as S−|0〉r = 0,Sz|0〉r = −s|0〉r ,S+|0〉r �= 0, and S̃−|0〉l =
0, S̃z|0〉l = −s̃|0〉l , S̃+|0〉l �= 0. The vacuum state is then defined as |0〉 = |0〉l⊗N

k=1 |0〉k⊗|0〉r .
Acting the double-row monodromy matrix on this vacuum state, we have

Ba(λ)|0〉 = 0

Ca(λ)|0〉 �= 0

D(λ)|0〉 = sin2N(λ + η)|0〉

Ãab(λ)|0〉 = sin2N(λ)

[
K(λ)ba − δab

sin(η) e−2iλ

sin(2λ + η)

]
|0〉 = Wab(λ) sin2N(λ)|0〉

(61)
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where

W12(λ) = 0 W21(λ) = C(λ)

W11(λ) = g(λ)
eiη sin(2λ)

sin(2λ + η)
[e−i(4λ+2η) sin(λ + c + e − sη) sin(λ + c + 2η + sη)

− sin(2λ + η) sin(λ + c + η + sη) e−i(3λ+c+3η−sη)]

W22(λ) = −e−2iλ sin(2λ) sin(λ + c + η − sη)

sin(2λ + η) sin(λ− c + sη)
.

(62)

The transfer matrix (33) can be written as

t (λ) = −K+(λ)abAab(λ) + D(λ)

= −K+(λ)baÃba(λ) +

(
1 − sin(η) e−2iλ

sin(2λ + η)
[A+(λ) +D+(λ)]

)
D(λ). (63)

Acting this transfer matrix on the ansatz of the eigenvector

Cd1(µ1)Cd2(µ2) · · · Cdn(µn)|0〉Fd1···dn (64)

where Fd1···dn is a function of the spectral parameters µj , we have

t (λ)Cd1(µ1)Cd2(µ2) · · · Cdn(µn)|0〉Fd1···dn

= sin(2λ− η) sin(λ− c̃ + η − s̃η) sin(λ− c̃ + 2η + s̃η)

sin(2λ + η) sin(λ− c̃ + η + s̃η) sin(λ− c̃ − s̃η)

× sin2N(λ + η)
n∏
i=1

sin(λ + µi) sin(λ− µi − η)

sin(λ + µi + η) sin(λ− µi)
Cd1(µ1) · · · Cdn(µn)|0〉Fd1···dn

+ sin2N(λ)

n∏
i=1

1

sin(λ− µi) sin(λ + µi + η)
Cc1(µ1) · · · Ccn (µn)

×t (1)(λ)c1···cn
d1···dn |0〉Fd1···dn

+u.t. (65)

where u.t. denotes unwanted terms, and t (1)(λ) is the so-called nested transfer matrix which
can be defined, with the help of the relation (60), as

t (1)(λ)
c1···cn
d1···dn = −K+(λ)ab

{
r̂(λ + µ1 + η)a1e1

ac1
r̂(λ + µ2 + η)a2e2

a1c2
· · · r̂(λ + µ1 + η)anenan−1cn

}
×Wanbn(λ)

{
r̂21(λ− µn)

bn−1dn
bnen

· · · r̂21(λ− µ2)
b1d2
b2e2
r̂21(λ− µ1)

bd1
b1e1

}
. (66)

We find that this nested transfer matrix can be regarded as a transfer matrix with reflecting
boundary conditions corresponding to the anisotropic case

t (1)(λ) = strK(1)+(λ′)T (1)(λ′, {µ′
i})K(1)(λ′)T (1)

−1
(−λ′, {µ′

i}) (67)

with the grading ε1 = ε2 = 1. Here, we denote λ′ = λ + η

2 , µ
′ = µ + η

2 . The reflecting matrix
can also be interpreted as an operator matrix with higher spin. Explicitly, with the help of (62)
and (63), we have

K(1)(λ′) = eiη sin(2λ′ − η)

sin(2λ′)

(
A(λ′, c′) B(λ′, c′)

C(λ′, c′) D(λ′, c′)

)

K(1)+(λ′) =
(
A+(λ′ − η

2 ) B+(λ′ − η

2 )

C+(λ′ − η

2 ) D+(λ′ − η

2 )

) (68)
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where c′ = c + η

2 . Note that the solution of the reflection equation can be changed by a gauge
transformation. In order to prove that the above defined nested transfer matrix is still a transfer
matrix with higher spin reflecting matrix, we should prove that K(1)(λ′) and K(1)+(λ′) satisfy
the reduced reflection equation and its corresponding dual reflection equation. Indeed, it can
be shown that the following reflection equation holds:

r̂12(λ
′ − µ′)K(1)

1 (λ′)r̂21(λ
′ + µ′)K(1)

2 (µ′) = K
(1)
2 (µ′)r̂12(λ

′ + µ′)K(1)
1 (λ′)r̂21(λ

′ − µ′). (69)

WithM(1) = diag(e2iη, 1), and the isomorphism (52), we find thatK(1)+ satisfies the following
relation:

r̂12(−λ′ + µ′)K(1)+
1(λ

′)st1M(1)−1
1 r̂21(2η − λ′ − µ′)K(1)+

2(µ
′)st2M(1)−1

2

= K(1)+
2(µ

′)st2M(1)−1
2 r̂12(2η − λ′ − µ′)K(1)

1 (λ′)M(1)−1
1 r̂21(−λ′ + µ′). (70)

By use of the cross-unitarity relation r̂ st112 (2η−λ)M(1)
1 r̂

st1
21 (λ)M

(1)
1

−1 = sin(λ) sin(2η−λ) · id ,
the above relation is just the dual reflection equation which we need.

The row-to-row monodromy matrixT (1)(λ′, {µ′
i}) (corresponding to the periodic boundary

condition) and its inverse are defined as

T (1)aan
(λ′, {µ′

i})e1···en
c1···cn = r̂(λ′ + µ′

1)
a1e1
ac1
r̂(λ′ + µ′

2)
a2e2
a1c2

· · · r̂(λ′ + µ′
1)
anen
an−1cn

(71)

T (1)
−1
bna
(−λ′, {µ′

i})dn···d1
en···e1

= r̂21(λ
′ − µ′

n)
bn−1dn
bnen

· · · r̂21(λ
′ − µ′

2)
b1d2
b2e2
r̂21(λ

′ − µ′
1)
ad1
b1e1
. (72)

We show that the problem of finding the eigenvalue of the original transfer matrix t (λ) reduces
to the problem of finding the eigenvalue of the nested transfer matrix t (1)(λ). The nested
transfer matrix is still a boundary case with higher spin reflecting matrix.

In order to ensure the assumed eigenvector is indeed the eigenvector of the transfer matrix,
µ1, . . . , µn should satisfy the following Bethe ansatz equations:

sin(2µj − η) sin(µj − c̃ + η − s̃η) sin(µj − c̃ + 2η + s̃η)

sin(2µj + η) sin(µj − c̃ + η + s̃η) sin(µj − c̃ − s̃η)
sin2N(µj + η)

×
n∏
i=1

sin(µj + µi) sin(µj − µi − η)

= −sin2N(µj )=
(1)(µj ) j = 1, 2, . . . , n. (73)

Here we have used the notation =(1)(λ) to denote the eigenvalue of the nested transfer matrix
t (1)(λ).

4.2. Bethe ansatz for the six-vertex model with higher spin reflecting matrices

We repeat almost the same procedure as that of the first-level algebraic Bethe ansatz method.
We only write down some results without the detailed calculations here. We have

eiη sin(2λ′ − η)

sin(2λ′)
D(λ′, c′)|0〉r = −e−i2λ sin(2λ) sin(λ + c + η − sη)

sin(2λ + η) sin(λ− c + sη)
|0〉r ≡ U2|0〉 (74)

eiη sin(2λ′ − η)

sin(2λ′)

[
A(λ′, c′) +D(λ′, c′)

sin(η) e−i2λ′

sin(2λ′ − η)

]
|0〉r (75)

= −e−i(2λ+η) sin(λ + c + η + sη) sin(λ− c − η + sη)

sin(λ− c − η − sη) sin(λ− c + sη)
|0〉 ≡ U1|0〉r (76)
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and

A+

(
λ′ − η

2

)
|0〉r = −ei(2λ+η) sin(λ + c̃ − η + s̃η)

sin(λ− c̃ + η + s̃η)
|0〉r ≡ U+

1 |0〉r (77)

[
D+

(
λ′ − η

2

)
− A+

(
λ′ − η

2

)
sin(η) e−i2λ′

sin(2λ′ − η)

]
|0〉r

= −ei2λ sin(2λ− η) sin(λ + c̃ − η − s̃η) sin(λ− c̃ + η − s̃η)

sin(2λ) sin(λ− c̃ − s̃η) sin(λ− c̃ + η + s̃η)
|0〉r ≡ U+

2 |0〉r .
(78)

We then can obtain the reduced double-row monodromy matrix. This double-row monodromy
matrix also satisfies the reflection equation with a six-vertex R-matrix. From this reflection
equation, we can find the commutation relations. And using the algebraic Bethe ansatz method,
we finally obtain the eigenvalues of the nested transfer matrix as

=(1)(λ′) = −U+
1U1

n∏
i=1

[sin(λ′ + µ′
i ) sin(λ′ − µ′

i )]

×
m∏
l=1

{
sin(λ′ − µ′(1)

l − η) sin(λ′ + µ′(1)
l − 2η)

sin(λ′ − µ′(1)
l ) sin(λ′ + µ′(1)

l − η)

}

−U+
2U2

n∏
i=1

[sin(λ′ + µ′
i − η) sin(λ′ − µ′

i − η)]

×
m∏
l=1

{
sin(λ′ − µ′(1)

l + η) sin(λ′ + µ′(1)
l )

sin(λ′ − µ′(1)
l ) sin(λ′ + µ′(1)

l − η)

}
(79)

where µ′(1)
1 , . . . , µ′(1)

m should satisfy the corresponding Bethe ansatz equations. In what
follows, we give a summary of our main result.

4.3. Result

The eigenvalues of the transfer matrix for the generalized supersymmetric t–J model are given
as follows:

=(λ) = sin(2λ− η) sin(λ− c̃ + η − s̃η) sin(λ− c̃ + 2η + s̃η)

sin(2λ + η) sin(λ− c̃ + η + s̃η) sin(λ− c̃ − s̃η)

× sin2N(λ + η)
n∏
i=1

sin(λ + µi) sin(λ− µi − η)

sin(λ + µi + η) sin(λ− µi)

+ sin2N(λ)

n∏
i=1

1

sin(λ− µi) sin(λ + µi + η)
=(1)(λ) (80)

=(1)(λ) = − sin(λ + c + η + sη) sin(λ− c − η + sη) sin(λ + c̃ − η + s̃η)

sin(λ− c − η − sη) sin(λ− c + sη) sin(λ− c̃ + η + s̃η)

×
n∏
i=1

[sin(λ + µi + η) sin(λ− µi)]
m∏
l=1

{
sin(λ− µ

(1)
l − η) sin(λ + µ(1)l − η)

sin(λ− µ
(1)
l ) sin(λ + µ(1)l )

}
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− sin(2λ− η) sin(λ + c̃ − η − s̃η) sin(λ− c̃ + η − s̃η) sin(λ + c + η − sη)

sin(2λ + η) sin(λ− c̃ − s̃η) sin(λ− c̃ + η + s̃η) sin(λ− c + sη)

×
n∏
i=1

[sin(λ + µi) sin(λ− µi − η)]
m∏
l=1

{
sin(λ− µ

(1)
l + η) sin(λ + µ(1)l + η)

sin(λ− µ
(1)
l ) sin(λ + µ(1)l )

}

(81)

where µ1, . . . , µn and µ(1)1 , . . . , µ(1)m should satisfy the Bethe ansatz equations

sin(µ(1)j + c + η + sη) sin(µ(1)j − c − η + sη) sin(µ(1)j + c̃ − η + s̃η) sin(µ(1)j − c̃ − s̃η)

sin(µ(1)j − c − η − sη) sin(µ(1)j + c + η − sη) sin(µ(1)j + c̃ − η − s̃η) sin(µ(1)j − c̃ + η − s̃η)

=
n∏
i=1

sin(µ(1)j + µi) sin(µ(1)j − µi − η)

sin(µ(1)j + µi + η) sin(µ(1)j − µi)

×
m∏

l=1,�=j

sin(µ(1)j − µ
(1)
l + η) sin(µ(1)j + µ(1)l + η)

sin(µ(1)j − µ
(1)
l − η) sin(µ(1)j + µ(1)l − η)

j = 1, . . . , m (82)

and
sin(µj + c̃ − η − s̃η) sin(λ + c + η − sη)

sin(µj − c̃ + 2η + s̃η) sin(λ− c + sη)

= sin2N(µj + η)

sin2N(µj )

m∏
l=1

sin(µj − µ
(1)
l ) sin(µj + µ(1)l )

sin(µj − µ
(1)
l + η) sin(µj + µ(1)l + η)

j = 1, . . . , n.

(83)

With the help of the definition (34), we know the energy of the Hamiltonian (34) takes the
following form:

E ≡ d ln=(λ)

dλ

∣∣∣∣
λ=0

= (N − 2) cos(η) +
n∑
i=1

sin2(η)

sin(µi) sin(µi + η)

− sin2(η)

[
1

sin(c̃ − η + s̃η) sin(c̃ + s̃η)
+

1

sin(c̃ − η − s̃η) sin(c̃ − 2η − s̃η)

]
.

(84)

5. Summary

In this paper, we have studied the generalized supersymmetric t–J model with boundary
impurities. Using the higher spin L operator of the XXZ Heisenberg chain and the general
diagonal solution to the reflection equation for the six-vertex model, we find a higher spin
reflecting matrix for the generalized supersymmetric t–J model. Applying the graded algebraic
Bethe ansatz method, we obtain the eigenvalues of the transfer matrix for the t–J model with
higher spin boundaries.

It is interesting to solve this problem in other background gradings, for example, FBF or
BFF. The higher spin reflecting matrix should be constructed from the BF or FB six-vertex
models. The analysis of ground state properties, low-lying excitations and the thermodynamic
Bethe ansatz is always worth performing.
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One can find that the SUq(2) higher spin reflecting matrix also satisfies the reflection
equation of SUq(N) model. The eigenvalues of the SUq(N) model with SUq(2) higher spin
boundary impurities can be obtained by using the nested algebraic Bethe ansatz method.
Actually, the SUq(2) higher spin boundary impurities could be embedded into SUq(M|N)
spin chains with M � 2 or N � 2.

After we put our paper to the cond-mat e-print archive, X Y Ge and H Q Zhou informed us
that they have solved a similar problem independently [47], in which the boundary impurities
are spin 1

2 .
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Göhmann F and Schulz H 1990 J. Phys.: Condens. Matter 2 3841
[12] Lee K J B and Schlottmann P 1988 Phys. Rev. B 37 379

Schlottmann P 1991 J. Phys.: Condens. Matter 3 6617
Schlottmann P and Zvyagin A A 1997 Phys. Rev. B 55 5027

[13] Schmitteckert P, Schwab P and Eckern U 1995 Europhys. Lett. 30 543
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